Устройство лазерного станка
Конструкция современных лазеров довольно проста. Независимо от производителя, станок лазерной резки со2 будет состоять из координатного стола, летающей оптики, излучающего элемента и вспомогательных механизмов. Остановимся подробнее на каждом из элементов конструкции.
1. Координатный стол
Координатный стол лазерного станка предназначен для точного позиционирования фокусирующего элемента относительно изделия. Точность контуров, скоростные показатели при гравировке и контурном рисовании, качество изделий зависят, в первую очередь, от этого элемента конструкции. Несущую функцию выполняет станина или корпус станка. К ней предъявляются требования жёсткости и точности геометрии. Для точного и плавного перемещения подвижных элементов, на станину установлены направляющие. От их качества зависит долговечность лазерно-гравировального станка и нагрузка на приводящую часть конструкции. В качестве привода, передающего усилие с моторов на подвижные части, могут выступать как зубчатые ремни, так и шарико-винтовые пары.
Существует множество способов сконструировать привод, у каждого есть свои достоинства, которые проявляют себя при правильном выборе сферы применения. Приводит в движение конструкцию мотор. На каждую ось координатного стола он свой. Могут использоваться сервомоторы и микрошаговые двигатели, которые, через свою систему управления подключены к контроллеру. Контроллер является основным управляющим элементом. Он получает программу с компьютера и перемещает с помощью координатного стола зеркала летающей оптики.
2. Летающая оптика
Для того, чтобы лазерное излучение попало точно в нужное место на материале, на подвижных частях координатного стола лазерно-гравировального станка установлена система зеркал. Луч, покидая излучающий элемент, встречает на своём пути первое, неподвижное, зеркало. Эта судьбоносная встреча меняет его траекторию, он отражается.
Для того, чтобы энергия луча не рассеялась зеркало изготовлено из специального материала и отполировано с высокой точностью, либо покрыто составом, уменьшающим рассеяние. После того, как первое, неподвижное, зеркало отразило луч, он попадает на второе зеркало, которое подвижно и. отразив луч, снова меняет его траекторию под прямым углом, направляя лазерный луч к третьему зеркалу, которое, в свою очередь отражает луч в фокусирующий элемент – линзу. Надо заметить, что в зависимости от мощности излучающего элемента диаметр луча на выходе из него может достигать десяти миллиметров. Линза фокусирует энергию луча в пятно диаметром всего в две десятые миллиметра. Вся энергия, излученная лазерной трубкой, оказывается в этом крохотном пятнышке.
3. Лазерная лампа
В качестве излучающего элемента в лазерных станках наиболее распространено использование стеклянных отпаянных ламп.
Лазерная лампа наполнена смесью газов на основе углекислоты. В ней организован оптический резонатор и два кольцевых электрода. При работе лазера на эти электроды подаётся высокое напряжение, приводящее к образованию тлеющего разряда, подобного разряду в неоновой рекламе. В этом разряде происходит движение электронов от положительного электрода к отрицательному и при пересыщении энергией происходит свечение — выделение фотонов, которые по инерции пролетают электрод и отражаются от первого, полупрозрачного зеркала резонирующего контура. Пролетая путь внутри тлеющего разряда эти фотоны сталкиваются с электронами и вызывают лавинообразное выделение себе подобных, долетая до второго, полностью не прозрачного зеркала, они отражаются от него. Зеркала расположены друг от друга на рассчитанном расстоянии, что приводит к резонансу системы. В результате энергия фотонов становится настолько велика, что первое, полупрозрачное зеркало уже не удерживает их и трубка излучает лазер. Излучение лазера когерентное и одномодовое, что означает, что все фотоны летят рядом и в одном направлении, не сталкиваясь и не рассеиваясь. Отраженное от зеркал летающей оптики и сфокусированное линзой излучение производит работу — жжёт. Соответственно происходит горение и образование дыма, который следует удалять.
4. Вспомогательные устройства при лазерной резке
Для того, что бы процесс работы на лазерно-гравировальном станке приводил к жизнеутверждающим результатам, доставлял удовольствие и продолжался как можно дольше следует использовать вспомогательные устройства. Важнейшее из них — устройство охлаждения. При работе излучающего элемента выделяется тепло, которое может привести к повреждению трубки, его нужно отводить. Для отвода тепла используют теплоноситель и аппарат для обеспечения циркуляции и охлаждения теплоносителя — чиллер. Чиллер, по сути, это холодильная установка с компрессором, испарителем и хладагентом. Она оснащена контроллером, который умеет поддерживать температуру, оптимальную для работы лазерной лампы.
Следующее по важности устройство — воздушный компрессор. Он обеспечивает избыточное давление в фокусирующем узле, что не позволяет продуктам горения оседать на линзе. Вторая функция — продувка места реза. Для получения поверхности реза с минимумом следов горения в воздушную магистраль можно подать инертный газ.
Конечно, продукты горения, которые выделяются при лазерной обработке, следует удалять, для этого используют системы вентиляции высокой производительности. Как минимум в шестьсот кубометров в час.
Укомплектовав свою лазерную машину всеми этими устройствами, можно быть уверенным, что все доступные для лазерной обработки материалы будут обработаны качественно и без вреда для станка и оператора.
- Комментарии